1

PART III: ATM

Traffic and Congestion Control

EE384A: Network Protocols and Standards

Traffic and Congestion Control in ATM Networks (1)

- Objective: effectively control congestion.
- Difficulties:
 - Limited number of overhead bits available for control over flow of user cells.
 - Majority of traffic is not amenable to flow control (voice, video)
 - Feedback is slow due to reduced cell transmission time compared to propagation delays across the network.
 - Wide range of applications:
 - Very different traffic traffic patterns
 - Very different services required (delay-sensitive for voice/video, loss-sensitive for data)

Traffic and Congestion Control in ATM Networks (2)

- Basic ATM Traffic control functions:
 - 1. Connection admission control (CAC)
 - At call set-up phase
 - Call accepted if sufficient resources are available
 - Traffic contract negotiated and agreed upon between user and network.
 - Limit on traffic volume (traffic descriptors)
 - Requested QOS (cell transfer delay, delay jitter, cell loss ratio)
 - Tolerance to accommodate cell delay variation

Traffic and

Congestion Control in ATM Networks (3)

- 2. Usage/network parameter control (UPC, NPC)
 - UPC performed at UNI
 - NPC performed at NNI
 - Set of actions taken by network to control traffic on an ATM connection (Police Function) to enforce compliance with negotiated traffic contract.

Traffic and Congestion Control in ATM Networks (4)

- Definitions
 - Traffic Parameters:
 - A traffic parameter is a specification of a particular traffic aspect.
 - Quantitative aspect
 - Peak cell rate
 - Mean cell rate
 - Average burst duration
 - Qualitative aspect (telephone, video phone)
 - ATM Traffic Descriptor:
 - Generic list of traffic parameters used to capture the traffic characteristics of an ATM connection. (e.g. peak cell rate)
 - Source Traffic Descriptor:
 - Set of traffic parameters belonging to the ATM traffic descriptor used during the connection set-up phase

EE384A: Network Protocols and Standards

GCRA Generic Cell Rate Algorithm

- Unambiguous discrimination between conforming and non-conforming cells (referred to as *Parameterized Conformance-Testing Algorithm.*)
- Standardized.
 - ITU-T Recommendation I.371
- Two equivalent versions:
 - Virtual Scheduling (VS)
 - Continuous-state Leaky Bucket (LB)

Traffic Contract Specification

- Traffic Contract Specification
 - 1. Connection traffic descriptor
 - Declared by user at connection set-up by means of signaling
 - Mandatory parameters: peak cell rate and cell delay variation
 - Optionally: sustainable cell rate burst tolerance.
 - 2. Requested Quality of Service Class
 - Required cell loss ratio
 - Cell transfer delay
 - Cell delay variation

Part III: ATM

UPC and NPC Actions

- UPC and NPC Actions
 - a) Cell passing.
 - b) Cell tagging. (operates on cells with CLP = 0, overwriting the CLP bit to 1)
 - c) Cell discarding.

Available Bit Rate Bearer Capability (1)

- CBR) Bandwidth resource Allocation process. (CAC)
- VBR
- Many data communication applications follow a different model.
 - They may modulate their information rate as a function of network loading status
- \implies ABR: Available bit rate service.
- User adapts its traffic to the changing ATM layer transfer characteristics as indicated by feedback control information received from the network.
- \Longrightarrow Lower cell loss ratio
- \implies No control for cell delay & cell delay variation.

ABR Bearer Capability (2)

- ABR Traffic Control Mechanism
 - Rate Based control (as opposed to credit based approach with buffer allocation).
 - Closed loop traffic control mechanism
 - Source End System (SES) adjust rate based on feedback control information received from the network.
- Tutorial paper at:

http://www.atmforum.com/atmforum/library/53bytes/backissues/ others/53bytes-1095-2.html • SES injects Resource Management (RM) cells into information cell stream on a regular basis, in order to probe the network.

- RM cells have CLP = 0, PTI = 110

- RM cells are returned by Destination End System (DES) to SES
 - a bit called DIR in the RM information field differentiates between forward and backward directions

Part III: ATM

- In the absence of backward RM cells, SES should continuously decrease its sending rate.
- SES may only increase its rate when given an explicit authorization by a backward RM cell.
- Upon receipt of backward RM cells with negative indication SES should further decrease its rate.

Part III: ATM

ABR Bearer Capability (5)

- Binary Feedback Information
 - For reasons of compatibility with existing ATM switching equipment that provide EFCI (explicit forward congestion notification) marking of cells.
 - SES sends cells with EFCI = 0
 - Switching nodes may set EFCI = 1
 - DES keeps track of congestion state
 - DES sends info in backward RM cell flow (one bit in RM cell is for congestion indication (CI))
 - May do same as above using RM cells (but not both EFCI & RM)

- Explicit Rate Feedback Information
 - Explicit rate field in the RM cells (ER field) 2 byte long.
 - Intermediate switching nodes may explicitly mark the desired SES cell sending rate.
 - SES initially writes the cell rate it would like to send.
 - ER field is subsequently modified by congested switches (and DES)
 - No switching node could ever increase ER.

Part III: ATM