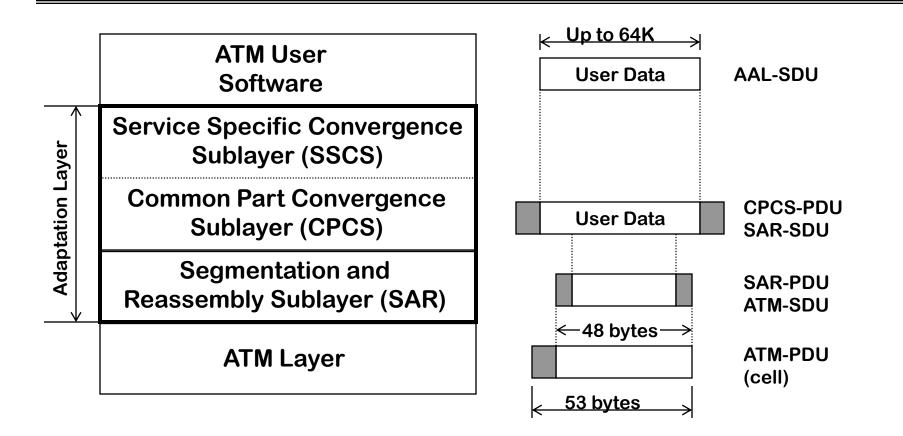

1

### Part III: ATM

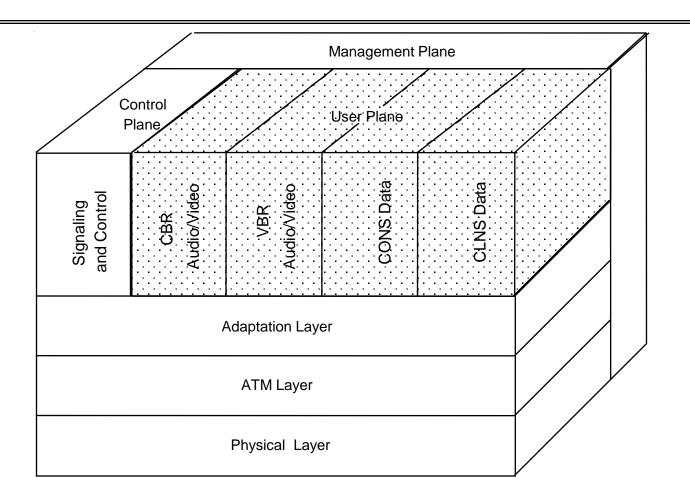
ATM Adaptation Layer

#### **ATM Adaptation Layer**




EE384A: Network Protocols and Standards

Part III: ATM


### **Adaptation Layer Functions**

- Convergence Sublayer:
  - Timing control: source-destination synchronization
  - Flow control
  - Forward Error Correction
  - Handling of lost and out-of-order ATM cells
- Segmentation and Reassembly (SAR) Sublayer:
  - Segmentation of messages (AAL-SDUs) into ATM cells, and reassembly
  - Detection of lost and out-of-order ATM cells
  - Detection of bit errors

### **ATM Sublayer Data Units**



#### **BISDN Services**



#### **Service Classes**

| Attributes                             | Class A                        | Class B  | Class C        | Class D |
|----------------------------------------|--------------------------------|----------|----------------|---------|
| Timing between<br>Source & Destination | Related                        |          | Non-Related    |         |
| Bit-Rate                               | Constant                       | Variable |                |         |
| Connection Mode                        | Connection-Oriented Connection |          | Connectionless |         |

#### **Examples of Services:**

Class A: DS1 and DS3 Circuit Emulation,

Constant bit rate audio and video

Class B: Variable Bit Rate Video

Class C: Support of Connection-Oriented Data Transfer

Class D: Support of Connectionless Data Transfer

## AAL Type 1

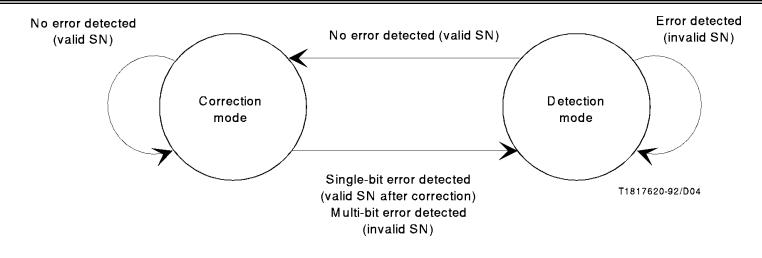
- Services provided to the higher layers:
  - Constant bit rate data transfer
  - Transfer of timing information between source and destination
  - Transfer of structure information between source and destination
  - Indication of lost or errored information which is not recovered by AAL-1, if needed

### **AAL1 - SAR functions**

- Mapping between CS-PDU and SAR PDU
  - takes 47-byte blocks from the CS and adds a 1-byte header
- Existence of a CS function (indicated to the peer CS entity by a bit in the header)
  - optional function
- Sequence numbering
- Error protection
  - applies only to the SAR header, which contains the sequence number and CS indication

### **SAR PDU Format For AAL Type 1**

| ATM Cell | SN      | SNP     | SAR_SDU    |
|----------|---------|---------|------------|
| Header   | (4-bit) | (4-bit) | (47-Octet) |


- SN = Sequence Number
- SNP = Sequence Number Protection

#### **SN and SNP fields**

| CSI bit | Sequence count field (3 bits) |  |
|---------|-------------------------------|--|
| <       | SN field (4 bits)             |  |

|          | CRC field (3 bits) | Even parity<br>bit |
|----------|--------------------|--------------------|
| <b>~</b> | SNP field (4 bits) | <b>&gt;</b>        |

### **SNP: Receiver Modes of Operation**



 ${\rm SN}\; {\rm Sequence}\; {\rm number}$ 

#### Correction Mode:

- Single-bit errors corrected (uses CRC to correct)
- Multiple-bit errors detected (CRC correction invalid)
- Detection Mode:
  - Both single and multiple-bit errors detected

### **SN+SNP** Operations

| CRC      | Parity | Meaning            | <b>Detection Mode</b> | Correction Mode        |
|----------|--------|--------------------|-----------------------|------------------------|
| zero     | ok     | Valid header       | SN valid, switch to   | SN valid               |
|          |        |                    | Correction            |                        |
| non-zero | fail   | Single bit error   | SN invalid            | Correct SN, switch to  |
|          |        |                    |                       | Detection              |
| zero     | fail   | Parity is in error | SN invalid            | Correct Parity, switch |
|          |        |                    |                       | to Detection           |
| non-zero | ok     | Multi-bit error    | SN invalid            | Switch to Detection    |

### AAL-1 Convergence Sublayer Functions

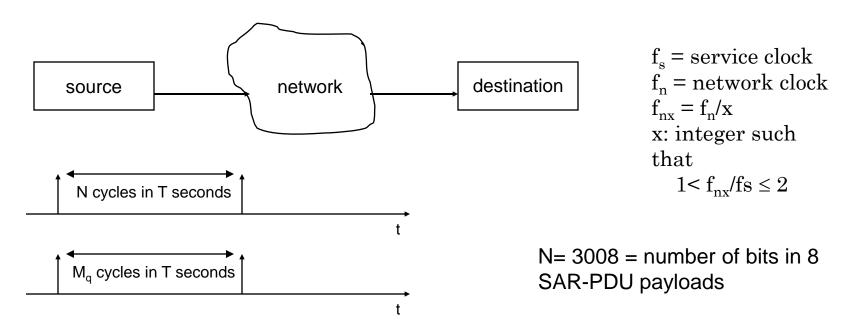
- Handling of cell delay variation (for CBR delivery)
- Handling of lost and mis-inserted cells
- Recovery of source clock frequency
- Transfer of structure information
- Forward error correction
- Report end-to-end performance
  - events of lost and mis-inserted cells
  - buffer overflow and underflow
  - bit error events

#### Part III: ATM

### **Source Clock Frequency Recovery**

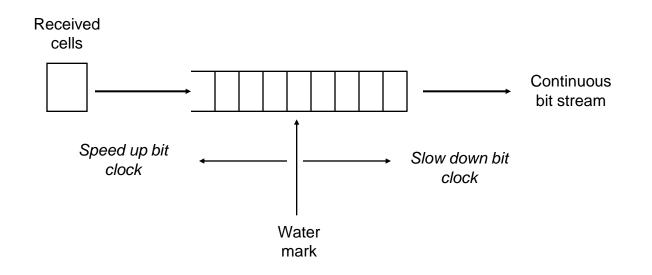
- Objective: synchronize the bit clock at the receiver with the bit clock at the transmitter
- Used for synchronous communication
  - Bit clock at the receiver must match the bit clock at the transmitter, otherwise the receiver either "goes dry" or overflows.
- Two methods can be used:
  - Synchronous Residual Time Stamp (SRTS) method
  - Adaptive Clock method

#### Part III: ATM


### **Synchronous Residual Time Stamp**

- Assumption: there is a common network clock available both at the receiver and at the transmitter.
- The input data clock (service clock) at the transmitter may not be synchronized to the network clock.
- Basic concept:
  - Count the number of cycles of the network clock during a predetermined number of cycles of the service clock.
  - Subtract the actual count from the nominal count (based on the known frequencies of each)
  - Send this difference to the receiver, using the CSI bit in the header over multiple cells

Prof. C. Noronha


Part III: ATM

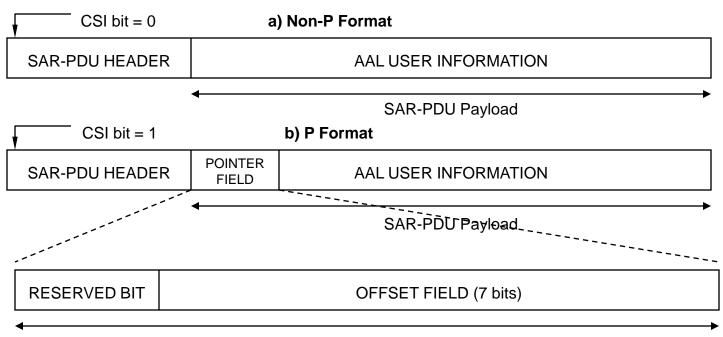
### Synchronous Residual Time Stamp (SRTS) Method



- RTS: Difference between nominal and measured values of  $M_{\rm q}$  in N cycles of  $f_{\rm s}$
- Represented by 4 bits, carried in the CSI fields of even-numbered SAR-PDUs

### **Adaptive Clock Method**




• Local clock is provided by a phase-locked loop driven by the buffer fill level.

### **Structured Data Transfer**

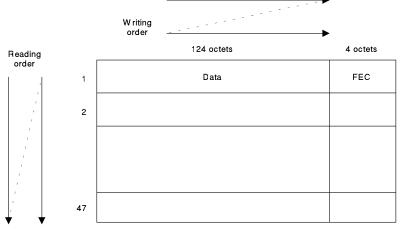
- Non-structured data transfer:
  - The AAL carries a continuous stream of bytes
  - There is no notion of a frame or packet
- Structured data transfer:
  - The AAL carries sequence of fixed-size frames; each frame has an arbitrary number of bytes
  - The AAL is required to delineate the frame at the receiver
  - Example: 8 kHz structures used for voice

Part III: ATM

### Structured Data Transfer Implementation



Pointer Field (8 bits)


- Pointer field: points to the first start of the structured block in the current or next SAR-PDU (range: 0-93)
- SDT can be used with SRTS

### **Error Correction for Video Services**

Forward Error Correction

Part III: ATM

• Uses (128,124) Reed-Solomon



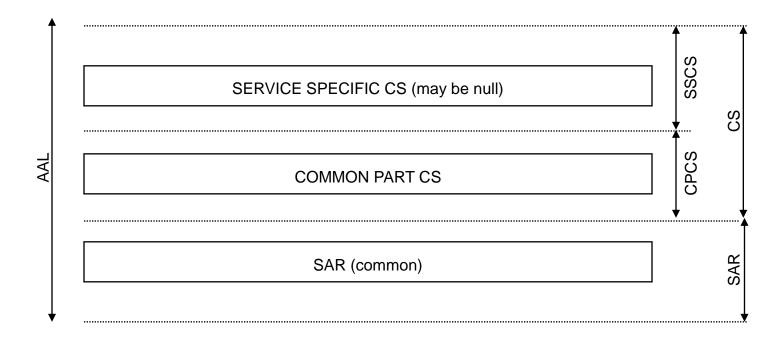
• Octet Interleaving

T1817670-92/d09

- CSI bit is set to 1 for the first SAR-PDU payload of the CS-PDU (this precludes the use of structured data transfer)
- Within any CS-PDU matrix, the following can be corrected:
  - 4 cell losses
  - 2 cell losses and 1 errored octet in each row
  - \* 2 errored octets in each row if there is no cell loss
- Overhead is 3.1 %
- Delay is 128 cells

## AAL Type-2

- Services:
  - Transfer of SDUs with a variable source bit rate
  - Transfer of timing information between source and destination
  - Indication of loss or errors
- Functions:
  - Segmentation and reassembly of user information
  - Handling of cell delay variation
  - Handling of lost and mis-inserted cells
  - Source clock frequency recovery at the receiver
  - Source data structure recovery at the receiver
  - Monitoring / handling of bit errors
- Still not completely defined

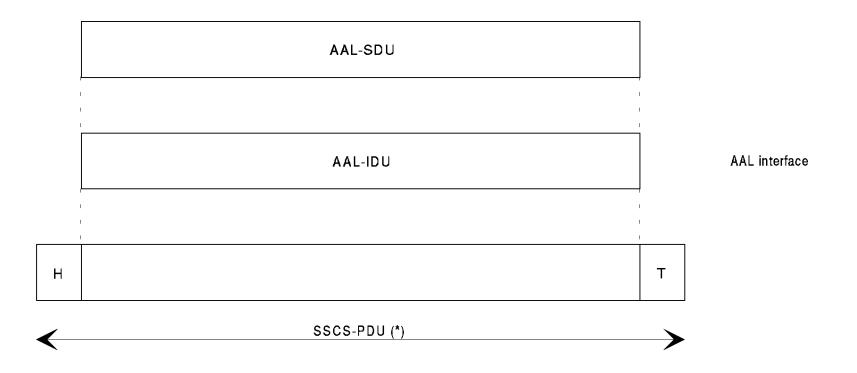

### AAL 3/4

- Supports class C and class D services for the transport of computer network traffic
  - Class C: connection-oriented
  - Class D: connectionless
- Traffic characteristics:
  - discrete packets
  - variable rate
  - no timing relationship required

## AAL 3/4 (cont.)

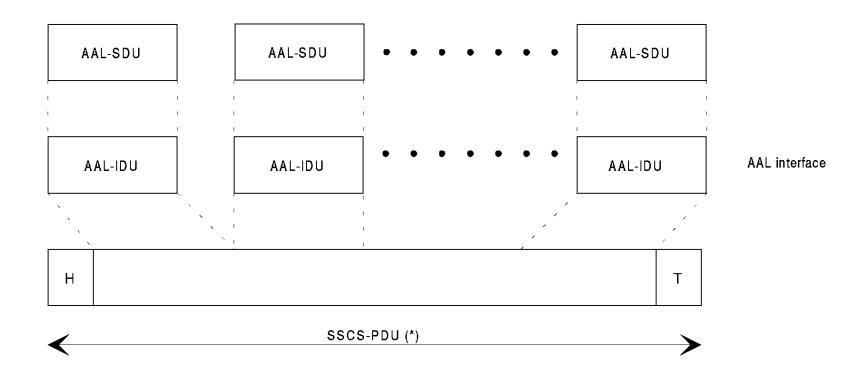
- Modes of Service:
  - Message mode
    - AAL-SDU is passed across AAL interface in exactly one AAL-IDU
  - Streaming mode
    - AAL-SDU is passed across AAL interface in one or more AAL-IDU's
- Modes of operation:
  - Assured: retransmission of missing or corrupted SSCS-PDU's
  - Non-assured
- For both modes of service, Assured and Non-assured modes of operation can be provided.

### Sublayers of the AAL type 3/4

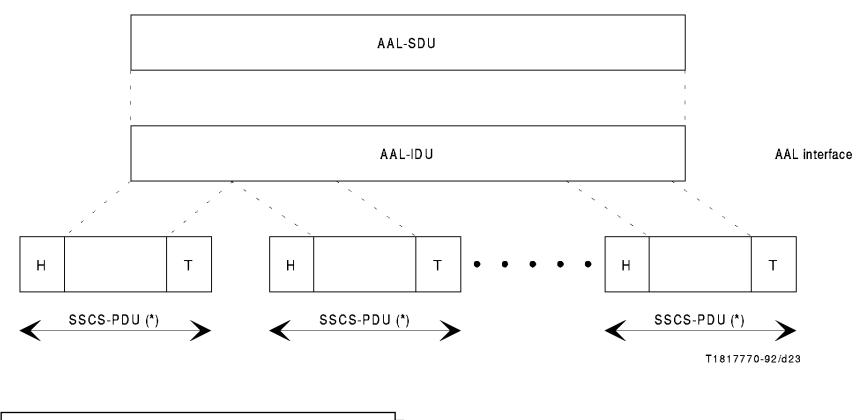



| CS   | Convergence sublayer                  |
|------|---------------------------------------|
| CPCS | Common part convergence sublayer      |
| SAR  | Segmentation and reassembly sublayer  |
| SSCS | Service specific convergence sublayer |
| 3303 | Service specific convergence sublayer |

### AAL Type 3/4 - CS Functions


- CPCS
  - Basic functionality needed to support a CNL network layer (class D)
  - Preservation of CPCS-SDU
  - Error detection and handling
  - Buffer allocation size (indication to the receiving peer entity)
  - Abort (a partially transmitted CPCS-SDU)
- SSCS
  - SSCS is null when supporting connectionless network layer (Class D)
  - Frame relaying telecommunication service (Class C)

#### **Message Mode Service**

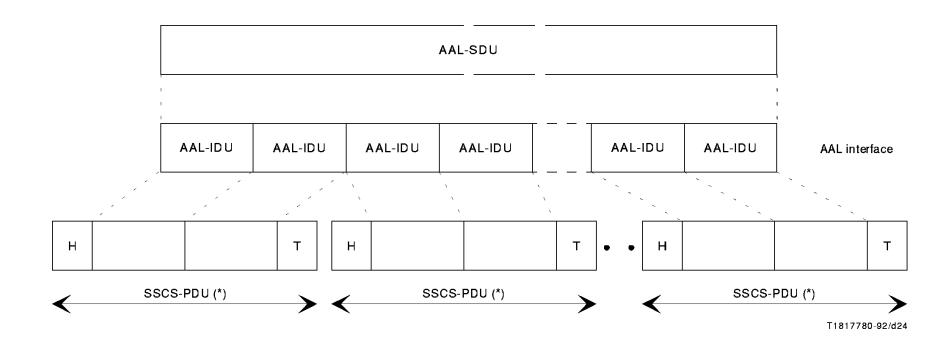





#### Message Mode Service with Blocking/Deblocking




#### Message Mode Service with Segmentation/Reassembly



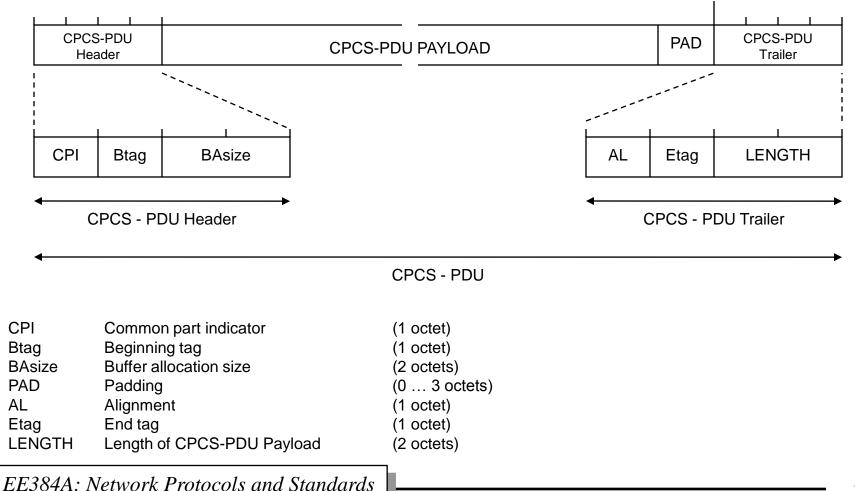

1

### **Streaming Mode Service**



# Streaming Mode Service with Segmentation/Reassembly




#### Combination of

### **Service Mode and Internal Function**

#### Combination of service mode and internal function

|                                  | AAL-SDU message<br>segmentation/reassembly<br>in the SSCS | AAL-SDU<br>blocking/deblocking<br>in the SSCS | Pipelining |  |
|----------------------------------|-----------------------------------------------------------|-----------------------------------------------|------------|--|
| Message                          |                                                           |                                               |            |  |
| Option 1                         | 0                                                         | N/A                                           | N/A        |  |
| Option 2                         | N/A                                                       | 0                                             | N/A        |  |
| Streaming                        | О                                                         | N/A                                           | 0          |  |
| Option 1 Long variable size SDUs |                                                           |                                               |            |  |
| Option 2 Short fixed size SE     | Us                                                        |                                               |            |  |
| O Optional                       |                                                           |                                               |            |  |
| N/A Not applicable               |                                                           |                                               |            |  |

### **CPCS-PDU Format for AAL Type 3/4**



### **CPCS-PDU** Fields (1)

• CPI, BA Size, Length fields:

Part III: ATM

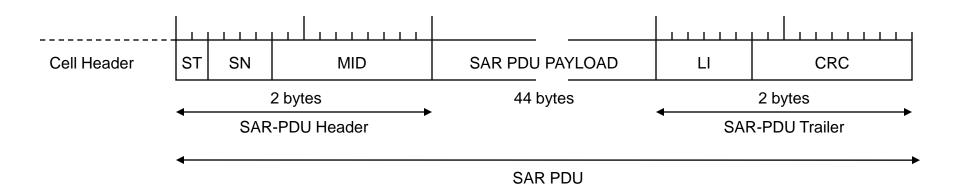
| CPI Encoding                                                       | BAsize field semantics                      | Length field<br>semantics                       |
|--------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|
| 0000000                                                            | Buffer allocation<br>requirements in octets | Equals length of CPCS-<br>PDU payload in octets |
| Other values are reserved<br>and are for future<br>standardization | For further study                           | For further study                               |

- Btag, Etag (Beginning-End Tag) fields:
  - Allows segment loss detection over CPCS-PDU
  - Same tag value transmitted in header and trailer
  - Changed for each CPCS-PDU such that all values (0-255) are cycled through before reused.

### **CPCS-PDU Fields (2)**

• PAD: Padding

Part III: ATM


- 0 to 3 octets set to 0, such that CPCS-PDU is padded out to 32bit boundary
- AL: Alignment
  - Achieve 32-bit alignment in the CPCS-PDU trailer. Otherwise unused.



### **AAL 3/4 - SAR Functions**

- Preservation of SAR-SDU
- Error detection and handling
  - bit errors
  - lost or gained SAR-PDUs
- SAR-SDU sequence integrity
- Multiplexing / Demultiplexing
- Abort

### **SAR-PDU Format For AAL Type 3/4**



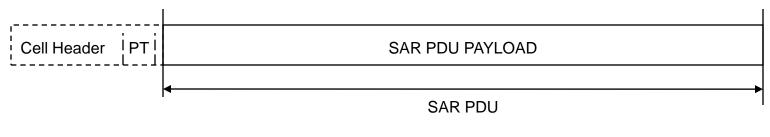
| ST  | Segment type                 | (2 bits)  |
|-----|------------------------------|-----------|
| SN  | Sequence number              | (4 bits)  |
| MID | Multiplexing identification  | (10 bits) |
| LI  | Length indication            | (6 bits)  |
| CRC | Cyclic redundancy check code | (10 bits) |

## SAR PDU Fields For AAL Type 3/4 (1)

- Segment Type
  - Used to indicate Beginning Of Message (BOM), Continuation Of Message (COM), End Of Message (EOM), Single Segment Message (SSM)
- Sequence Number
  - To detect lost or mis-inserted cells
  - Sequence number is incremented modulo 16
  - Reset when a new CS-PDU starts
- Multiplexing Identification (MID) Field:
  - Allows interleaving of SAR-PDUs from different SAR-SDUs
  - All SAR-PDUs of a SAR-SDU will have the same MID field value
  - In connection oriented applications, this capability may be used to multiplex multiple SAR connections on a single ATM layer connection on a user-by-user basis

## SAR PDU Fields For AAL Type 3/4 (2)

- SAR PDU Payload Field
  - CS-PDU information left justified within SAR-PDU payload field.
  - Part of SAR-PDU format not used for CS-PDU information is coded as 0.
- Payload Length Indication Field
  - For data SAR-PDU, this field must be 44 for BOM and COM, less than or equal to 44 for EOM and SSM
  - Abort SAR-PDU is indicated by segment type=EOM and payload length=63
- CRC Field
  - Value of CRC calculation performed over entire contents of SAR-PDU, including the header and LI field.
  - Polynomial:  $x^{10}+x^9+x^5+x^4+x+1$


### AAL Type 5

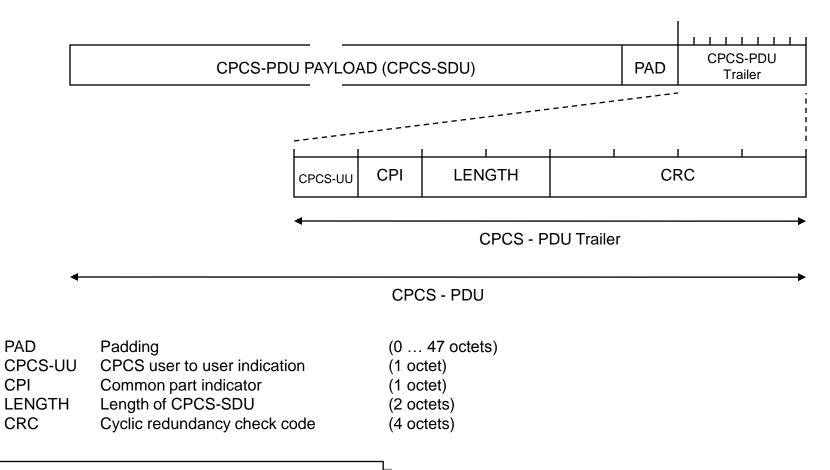
- Provides the same services as AAL Type 3/4
- More efficient SAR
- If multiplexing is used in the AAL, it occurs in the SSCS.



### **AAL 5 - SAR Functions**

 The only function of AAL 5 SAR is to preserve the SAR-SDU



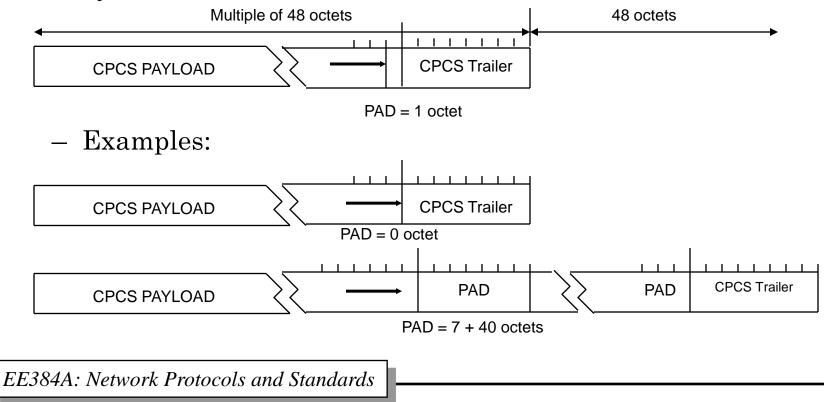

PT: Payload Type

Note: The Payload Type field belongs to the ATM header. It conveys the value of the AUU parameter end-to-end

PT=0: Beginning or continuation of SAR-SDU PT=1: End of SAR-SDU or single-segment SAR-SDU



### **AAL 5- CPCS Structure**




## AAL5 CPCS-PDU Fields (1)

• PAD: Padding

Part III: ATM

Complements the CPCS-PDU to an integral multiple of 48 bytes



### AAL 5- CPCS-PDU Fields (2)

- CPCS-UU: User-to-user indication
  - This field is used to transparently transfer user-to-user information
- CPI: Common part indicator
  - Aligns the CPCS-PDU trailer to 64 bits
  - Other functions are for further study
- Length:
  - Length of the CPCS-PDU payload field in octets
- CRC:
  - CRC-32 performed over the entire contents of the CPCS-PDU (payload, pad, and the first 4 octets of the trailer)
  - Polynomial:  $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$