1

IP Multicast

Basic Concepts

- Unicast:
 - Sent to a specific host.
- Broadcast:
 - Sent to all hosts (normally restricted to the local LAN)
- Multicast:
 - Sent to a group (not everybody)
 - Can go across routers
 - Main reason: efficiency, saves on bandwidth over possible alternatives:
 - Multiple unicast: packet sent many times.
 - Broadcast: hosts that are not interested in the packet get it.

Multipoint Taxonomy

- Two Planes:
 - **Control Plane**: deals with the establishment of the multipoint session
 - Data Plane: deals with the data transfer amongst the session participants
- Types of Control Planes:
 - *Rooted*: one special participant, the root, establishes the session, and adds the leaf nodes. Session does not exist without the root.
 - *Non-rooted*: all participants are leaves. They add themselves to a pre-existing session (this is the same as having an implicit root in the network).

Multipoint Taxonomy (cont.)

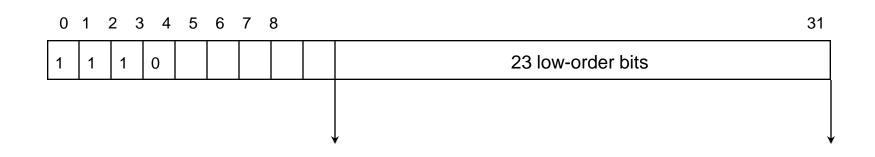
- Types of Data Planes:
 - *Rooted*: there is a special participant, the root. Data flows from the root to all the leaves. Leaves may send data back to to root, but not talk amongst themselves.
 - *Non-rooted*: all participants are leaves. Any data sent will be delivered to all participants. Non-participants may also send data.

	rooted control plane	non-rooted control plane
rooted	ATM	no known
data plane	ST-II	examples
non-rooted	T.120	IP Multicast
data plane		H.320 (MCU)

IP Multicast

- IP multicasting is the "Internet abstraction" of LAN multicasting.
- Membership of an IP- multicast group is dynamic.
 - A host may join or leave at any time
 - A host may be member of an arbitrary number of multicast groups.
- Membership determines whether the host will receive datagrams sent to the multicast group.
- A host may send datagrams to a multicast group without being a member.
- Basic definition: RFC 1112

IP Multicast Addresses


• A multicast group has a unique class D address

0	1	2	3	4	31
1	1	1	0	Group Identification	

Addresses range from 224.0.0.0 through 239.255.255.255224.0.0.0reserved.224.0.0.1all hosts group (all hosts & routers participating IP
multicast)

- Well-known addresses
- Transient multicast addresses
- Multicast addresses can be used only as destinations

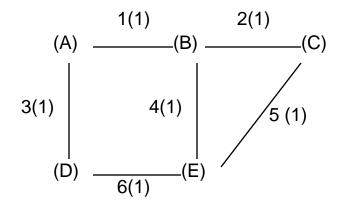
Mapping IP Multicast Address to Ethernet Multicast Address

Ethernet special multicast MAC address 01.00.5E.00.00.00₁₆

with 23 low-order bits replaced by 23 low-order bits of IP multicast address

Note that 32 Class-D addresses map into the same MAC address, so software must be prepared to filter.

Multicast Support In Current Ethernet Devices


- All Ethernet interfaces are capable of "promiscuous mode" receive all packets. This is the lowest common denominator.
- Some devices can be programmed to receive all multicasts, or be given a list of multicast MAC addresses to listen to.
- Most common today: use of a hash table
 - Run the desired multicast MAC address through the Ethernet CRC generator.
 - Use five or six bits of the CRC to index a flag in memory
 - If the flag is set, the packet is received; otherwise, it is discarded.

Benefits of Multicast (1)

- 1. Resource Discovery
 - In OSPF, sending a hello packet to all neighbors on nonbroadcast networks requires the routers to be configured with a list of neighbor addresses.
 - Multicast allows the router to discover this list with little burden on the administrator. (TTL = 1).
 - In BOOTP, servers need not be on the same LAN, use "scopelimited" broadcasts (TTL = 1, the 2, etc.)

Benefits of Multicast (2)

- 2. Efficiency:
 - Fewer transmissions compared to point-to-point
 - Example: Node C sending a file to nodes A, B, D and E.

	Using Point-to-point For A B E D Total					Multi cast
Link 1 2 5 6		1	1	1	1 2 2 1	1 1 1
	2	1	1	2	6	4

Benefits of Multicast (3)

- 3. Multipoint Communication:
 - Single Source multicasting to a number of destinations (one way communication, one-to-many)
 - Unknown destinations
 - Variable membership
 - Conferencing: many-to-many
 - Multiple sources
 - Multiple destinations

Multicast Routing

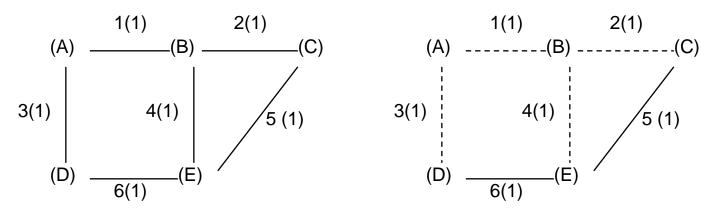
- Flooding
- Spanning Trees
- Reverse Path Forwarding
- Steiner Trees
- Core based Trees

Multicast Routing Flooding (1)

- Simplest multicast routing algorithm
- Used in:
 - OSPF flooding link state updates
 - "Usenet news" messages flooded to news servers
- Basically:
 - 1. Node ascertains if received packet is new or duplicate
 - 2. If new, transmit on all interfaces except interface on which it came.

Multicast Routing Flooding (2)

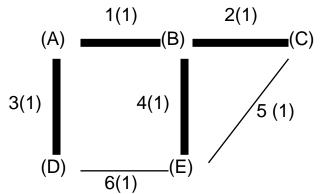
- Test for 1st reception of a packet
 - OSPF: examine link state database
 - Usenet news:
 - Comparison with a local database (or index) bared on a unique identifier for the news message.
 - Use of trace information listing hosts that have already seen the message
 - (i) If local host is present in list, packet is not processed any further.
 - (ii) If a neighbor is present in list, packet is not forwarded.


 \Rightarrow Application-level flooding.

Multicast Routing Flooding (3)

- At IP Level, similar functions could be implemented.
 - List of recently seen packets (e.g., last 2 minutes)
 - But list could be long
 - Packet may still be received more than once
 - Route recording option (similar to traces)

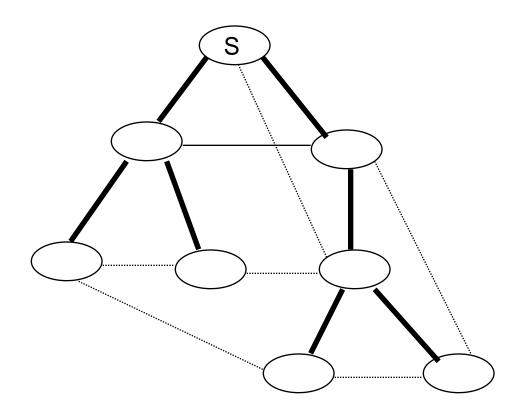
Multicast Routing Spanning Tree (1)


- Similar to what was described in IEEE 802.1
 - Forward packet only on interfaces belonging to spanning tree.

- Drawbacks:
 - 1. It does not take into account group membership
 - 2. May concentrate traffic on a small subset of network links.

Multicast Routing Spanning Tree (2)

- Example:
 - One group includes only A, B and C
 - Another group includes nodes C, D, E
 - \Rightarrow Packet still propagated to D and E.

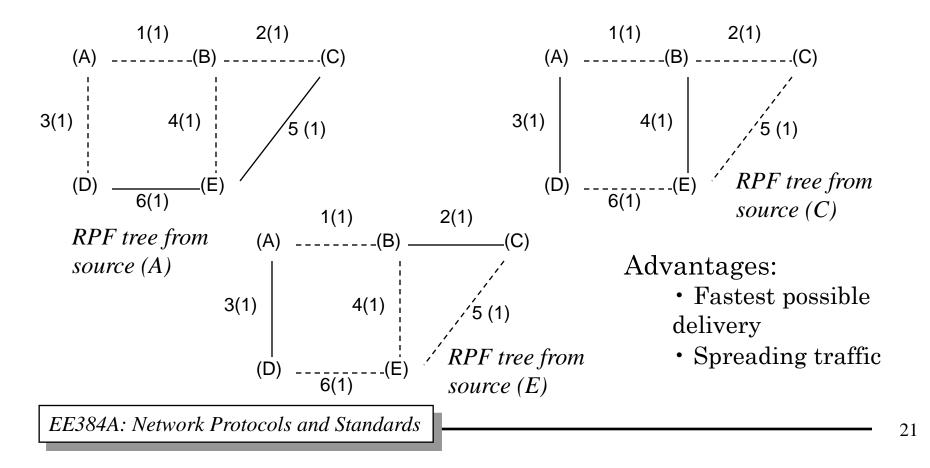

⇒ Packet will propagate on all links of spanning tree.
Propagating it on links 5 and 6 is more efficient.
⇒ Group specific graphs to achieve higher efficiency.

Multicast Routing Reverse-Path Forwarding (1)

- Used in the MBONE
- Takes advantage of unicast routing tables to figure out a spanning tree for each multicast source.
- Algorithm
 - 1. When a multicast packet is received, note source (S), interface (I)
 - 2. If I belongs to the shortest path toward S, forward to all interfaces except I.
 - 3. If the test in step 2 is false, drop the packet.
 - Good: Does not require any more resources than the normal unicast routing table.
 - Bad: Uses reverse-path metric (should use forward-path metrics!)

Prof. C. Noronha

Multicast Routing Reverse-Path Forwarding (2)



Multicast Routing Reverse-Path Forwarding (3)

- Simple Improvement:
 - If local router is able to determine whether or not it is on the shortest path between a neighbor and the source, then:
 - If yes, forward to neighbor
 - If no, do not. (neighbor will drop it)

Multicast Routing Reverse-Path Forwarding (4)

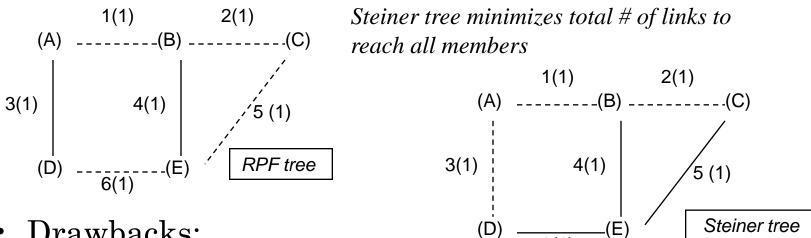
• RPF results in different spanning tree for each source.

Multicast Routing

Taking into Account Group Membership

- In RPF and all previous algorithm
 - Multicast packets are broadcast to all nodes. No group membership information is taken into account.
 - Possible improvement: routers connected to leaf subnets may filter multicast traffic according to group membership.
- IGMP (Internet Group Membership Protocol) is introduced to allow hosts to indicate whether or not they are interested in joining a multicast.

Multicast Routing RPF and Pruning (1)


- Basis:
 - Memorizing group membership within the tree, and forwarding packets down only if group members exist.
 - Note:
 - Group membership information may vary rapidly & require very dynamic updates!
- MBONE RPF Pruning Option: Flood and Prune
 - First packet of multicast transmissions is propagated to all nodes in network;
 - Leaf nodes will send back "Prune Messages" to upstream router if no member exist in leaf network.
 - Intermediate nodes send upwards "Prune Messages" if they receive such messages on all their downstream interfaces.

Multicast Routing RPF and Pruning (2)

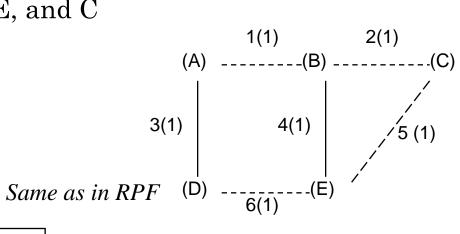
- Drawbacks:
 - -1^{st} packet is flooded.
 - Routers must keep states per group and per source.
 - State varies with membership & network topology.
 - State must be kept for limited lifetime.
 - \Rightarrow periodic flooding & pruning required

Multicast Routing Steiner Trees (1)

- Minimizing Network Resources. •
 - Example: Multicast from C to A and D

6(1)

- Drawbacks: ٠
 - Hard to compute (N-P complete)
 - Hard to reconfigure as membership changes.


Part II: Internet Protocols

Prof. C. Noronha

Multicast Routing Steiner Trees (2)

Group A, D, E, and C

6(1)

1(1) 2(1)

____(B) __

Multicast Routing Core-based Trees (1)

- Introduced to overcome the drawbacks of RPF with Pruning
 - Flooding
 - States for all active groups & sources.
- Choose a *core*: a fixed point in the network serving as the center of the multicast group.
 - Recipients send a "JOIN" towards core.
 - Intermediate routers record interfaces on which JOIN messages are received.
 - If first join, forward it up to the core.

Multicast Routing Core-Based Trees (2)

- Originators of multicast packets need not belong to group.
 - Packets are forwarded toward the core.
 - As soon as packets reach first router belonging to the tree, multicasting of packets proceed along the CBT tree similar to spanning tree forwarding.
- CBT builds a (spanning) tree for each group, same for all sources.

Multicast Routing Core-Based Trees (3)

- Advantages of CBT over RPF:
 - More efficient:
 - One state per group instead of state per group and source.
 - No flooding, packets are sent to participants only.
 - Packet forwarding does not rely on routing tables
- Drawbacks:
 - CBT is sub-optimal
 - Traffic concentration (use multiple cores!)