OSPF

Open Shortest Path Protocol

- Link state routing protocol developed by the IETF for use in the internet (RFCs 1583, 2178, 2328)
 - "Distributed Map" Concept
 - Flooding protocol for the dissemination of information
- Advantages over Distance Vector Routing Protocols
 - Fast, loopless convergence
 - Precise metrics, and if needed, multiple metrics per link
 - Supports multiple paths to a destination, that can be used simultaneously

OSPF Features

- Features :
 - type of service routing
 - load balancing (multiple routes to a destination)
 - network partitioning (areas made independent of each others)
 - authentication of exchanges between routers
 - supports host-specific routes, network-specific routes, and subnet routes
 - reduction of the routing traffic on broadcast networks by means of a designated router
 - supports exchange of information learned from other (external) sites

Basic Idea

- Each router has a complete map of the network topology.
- The map is built by "flooding":
 - Each router advertises the state of all its interfaces (their costs, and where it connects to).
 - These link state advertisements are flooded through the network; upon reception, the other routers repeat them on all their interfaces.
 - Advertisements have sequence numbers.
- Given the map, each router uses Dijkstra's algorithm to compute the shortest path tree from itself to all other routers.

The Distributed Map

• "Distributed Map" concept :

From	То	Link	Distance
А	В	1	1
А	D	3	1
В	А	1	1
В	С	2	1
В	Е	4	1
С	В	2	1
С	Е	5	1
D	А	3	1
D	Е	6	1
Е	В	4	1
Е	С	5	1
F	П	6	1

Database

- Every router has a copy of the distributed map in memory

Updating the Database

- Flooding Protocol
- Database is updated after each change of link state

From	То	Link	Distanc	Number
А	В	1	inf	2
А	D	3	1	1
В	А	1	inf	2
В	С	2	1	1
В	Е	4	1	1
С	В	2	1	1
С	Е	5	1	1
D	А	3	1	1
D	Е	6	1	1
Е	В	4	1	1
Е	С	5	1	1
Е	D	6	1	1

The database after flooding

Message < From A, to B, link 1, distance = infinite > Need : Timestamp or message number

Flooding algorithm

- 1. Receive the message. Look for the record in the database
- 2. If record is not present, add it to the database and broadcast the message
- 3. Else, if the number in the database is lower than the number in the message, replace record with new value, and broadcast the message
- 4. Else if the number in the database is greater than the number in the message, transmit the database value in a new message through the incoming interface
- 5. Else, if both numbers are equal, do nothing

Map Inconsistency

• Possibility of inconsistency in maps

The database in nodes A and D

The database in nodes B,C and E

Inconsistency (cont.)

The database in nodes A and D

The database in nodes B,C and E

Inconsistency (cont.)

The database in nodes A and D

The database in nodes B,C and E

Synchronizing Databases

- Neighboring routers need to "bring up the adjacency" (synchronize their databases).
- Made easy by the existence of link identifiers and version numbers
 Links are identified by the network IP address.
- Exchanging complete copies of databases is inefficient
- OSPF defines "database description" packets
 - link identifiers and version numbers only
- Neighboring routers will synchronize their databases :
 - Phase 1 routers will send complete description of their databases compile list of interesting records (ones that are newer than their local records)
 - Phase 2 each router polls its neighbor for a full copy of interesting records by means of "link state request" packets

Securing the Map Updates

- Coherency of routing is fully dependent on maintaining synchronized copies of databases in all nodes
- Each router is only required to be synchronized with its neighbors
- Measures introduced in OSPF
 - a) flooding procedure include hop-by-hop acknowledgment
 - b) Database description packets are transmitted in a secure fashion
 - c) each link state record is protected by a timer and is removed from the database if not refreshed in due time
 - d) all records are protected by a checksum
 - e) messages can be authenticated, e.g. by passwords, or encrypted

OSPF Algorithm (Dijkstra's)

- 1. Initialize the set **E** to contain only the source node S and the set **R** to contain all other nodes. Initialize the list of paths **O** to contain all the one hop paths starting from S. Each of these paths has a cost equal to the corresponding link's metric. Sort list **O** by increasing metrics.
- 2. If list **O** is empty, or if the first path in **O** has an infinite metric, mark all nodes left in **R** as unreachable. The computation is finished.
- 3. First examine P, the shortest path in list O. Remove P from O. Let V be the last node in P. If V is already in set E, go back to step 2. Otherwise, P is the shortest path to V. Move V from R to E.
- 4. Build a set of new candidate paths by concatenating P and each of the links starting from V. The cost of these paths is the sum of the cost of P and the metric of the link appended to P. Insert the new links in the ordered list **O**, each at the rank corresponding to its cost. Go to step 2.

Prof. C. Noronha

Example

Advantages of OSPF

- Why is a link State Protocol Better?
 - 1. Fast, loopless convergence
 - 2. Support of precise metrics and, if needed, multiple metrics
 - 3. Support of multiple paths to destination

Fast, Loopless Convergence

- 1) Fast, Loopless Convergence
- Fast:
 - Distance vector protocol execute a distributed computation using the Bellman-Ford algorithm. The number of steps required is proportional to the number of nodes in the network.
 - Link state scenario, on the contrary, consists of two phases:
 - A rapid transmission of the new information through the flooding protocol.
 - A local computation
- Loopless:
 - Immediately after the flooding and the computation, all routes in the network are sane - no intermediate loops, no counting to infinity. Given the disruptive consequences of routing loops, this property alone is enough to make OSPF preferable to RIP.

Support for Multiple Metrics

- 2) Support of Multiple Metrics (1)
 - The shortest-path computation is executed with a full knowledge of the topology, one can use arbitrarily precise metrics without slowing the convergence.
 - Convergence speed is not a function of the metrics.
 - The precision of the computation makes it possible to support several metrics in parallel.

Multiple Metrics

- Possible metrics: ٠
 - Largest throughput ____
 - Lowest delay _
 - Lowest cost _
 - Best reliability ____

- Document several metrics for each link

- Need to Compute different routing table Present the selected metric in packet

Multiple Metrics Example

Support of Multiple Metrics

• Must make consistent decision in all nodes

Support for Multiple Paths

- 3) Multiple Paths
 - In complex networks, there are usually several "almost equivalent" routes toward a destination.
 - Mathematical analysis has proven that splitting the traffic over multiple paths is more efficient. This will lead to out-of-order delivery of some packets, but the average delay will be lower in the split-traffic case. The variations of the delay will also be lower due to the reduction in the correlation between packet arrivals on any single path.
 - Spreading the traffic also alleviates the effect of the disconnection in one single path. Without spreading the traffic, if the path becomes unavailable, all of a sudden the traffic will be routed through the alternate path, possibly leading to congestion of this path.

Algorithm for Multiple Paths

- Modified OSPF Algorithm
 - 1. Initialize the sets E and R, and the list O, as in the standard SPF algorithm.
 - 2. If O is empty, the algorithm is finished.
 - 3. First examine P, the shortest path in the list O. Remove P from O. Let V be the last node in P. If V is already in the set E, continue at step 4. Otherwise, P is the shortest path to V. Move V from R to E. Continue at step 5.
 - 4. Look at W, the node preceding V in the path P. If the distance from S to W is lower than the distance from S to V, then note P as an acceptable alternate path to V. In all cases, continue at step 2.
 - 5. Build the new set of candidate paths, add them to O, as in the step 4 of the standard algorithm. Continue at step 2.

Issues

- Design of OSPF
 - Separating hosts and routers
 - Broadcast networks (Ethernet, FDDI ...)
 - Non-broadcast networks (X.25, ATM)
 - Splitting very large networks into areas